Single-molecule mechanics, gender, culture and mathematics performance, effect of tubulent driven instabilities on insect flight, and magnetic stabilization

Here are some interesting papers from the latest PNAS.

  1. Characterizing the resistance generated by a molecular bond as it is forcibly separated — L B Freund

    The goal of measurements of the resisting force generated by a molecular bond as it is being forcibly separated under controlled conditions is to determine functional characteristics of the bond. Here, we establish the dependence of force history during unbinding on both those parameters chosen to characterize the bond itself and the controllable loading parameters. This is pursued for the practical range of behavior in which unbinding occurs diffusively rather than ballistically, building on the classic work of Kramers. For a bond represented by a one-dimensional energy landscape, modified by a second time-dependent energy profile representing applied loading, we present a mathematical analysis showing the dependence of the resistance of the bond-on-bond well shape, general time dependence of the imposed loading, and stiffness of the loading apparatus. The quality of the result is established through comparison with full numerical solutions of the underlying Smoluchowski equation.

    A commentary on the paper is also available here.

  2. Gender, culture, and mathematics performance — J S Hyde and J E Mertz

    Using contemporary data from the U.S. and other nations, we address 3 questions: Do gender differences in mathematics performance exist in the general population? Do gender differences exist among the mathematically talented? Do females exist who possess profound mathematical talent? In regard to the first question, contemporary data indicate that girls in the U.S. have reached parity with boys in mathematics performance, a pattern that is found in some other nations as well. Focusing on the second question, studies find more males than females scoring above the 95th or 99th percentile, but this gender gap has significantly narrowed over time in the U.S. and is not found among some ethnic groups and in some nations. Furthermore, data from several studies indicate that greater male variability with respect to mathematics is not ubiquitous. Rather, its presence correlates with several measures of gender inequality. Thus, it is largely an artifact of changeable sociocultural factors, not immutable, innate biological differences between the sexes. Responding to the third question, we document the existence of females who possess profound mathematical talent. Finally, we review mounting evidence that both the magnitude of mean math gender differences and the frequency of identification of gifted and profoundly gifted females significantly correlate with sociocultural factors, including measures of gender equality across nations.

  3. Turbulence-driven instabilities limit insect flight performance — S A Combes and R Dudley

    Environmental turbulence is ubiquitous in natural habitats, but its effect on flying animals remains unknown because most flight studies are performed in still air or artificially smooth flow. Here we show that variability in external airflow limits maximum flight speed in wild orchid bees by causing severe instabilities. Bees flying in front of an outdoor, turbulent air jet become increasingly unstable about their roll axis as airspeed and flow variability increase. Bees extend their hindlegs ventrally at higher speeds, improving roll stability but also increasing body drag and associated power requirements by 30%. Despite the energetic cost, we observed this stability-enhancing behavior in 10 euglossine species from 3 different genera, spanning an order of magnitude in body size. A field experiment in which we altered the level of turbulence demonstrates that flight instability and maximum flight speed are directly related to flow variability. The effect of environmental turbulence on flight stability is thus an important and previously unrecognized determinant of flight performance.

  4. Magnetic stabilization and vorticity in submillimeter paramagnetic liquid tubes — J M D Coey et al

    It is possible to suppress convection and dispersion of a paramagnetic liquid by means of a magnetic field. A tube of paramagnetic liquid can be stabilized in water along a ferromagnetic track in a vertical magnetic field, but not in a horizontal field. Conversely, an “antitube” of water can be stabilized in a paramagnetic liquid along the same track in a transverse horizontal field, but not in a vertical field. The stability arises from the interaction of the induced moment in the solution with the magnetic field gradient in the vicinity of the track. The magnetic force causes the tube of paramagnetic liquid to behave as if it were encased by an elastic membrane whose cross-section is modified by gravitational forces and Maxwell stress. Convection from the tube to its surroundings is inhibited, but not diffusion. Liquid motion within the paramagnetic tube, however, exhibits vorticity in tubes of diameter 1 mm or less—conditions where classical pipe flow would be perfectly streamline, and mixing extremely slow. The liquid tube is found to slide along the track almost without friction. Paramagnetic liquid tubes and antitubes offer appealing new prospects for mass transport, microfluidics, and electrodeposition.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s


%d bloggers like this: